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a b s t r a c t

Drought affects natural environment of an area when it persists for a longer period. So,

drought forecasting plays an important role in the planning and management of natural

resources and water resource systems of a river basin. During last decade neural networks

have shown great ability in modeling and forecasting nonlinear and non-stationary time

series. This paper compares linear stochastic models (ARIMA/SARIMA), recursive multi-

step neural network (RMSNN) and direct multi-step neural network (DMSNN) for drought

forecasting. The models were applied to forecast droughts using standardized precipitation

index (SPI) series as drought index in the Kansabati River Basin, which lies in the Purulia

district of West Bengal, India. The results obtained from three models and their potential to

forecast drought over different lead times are presented in this paper.
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. Introduction

rought is a normal feature of climate and its recurrence is
nevitable. However, there remains much confusion within
he scientific and policy-making community about its char-
cteristics. Research has shown that the lack of a precise and
bjective definition in specific situations has been an obsta-
le to understanding drought which has led to indecision and
naction on the part of managers, policy-makers, and others
Wilhite and Glantz, 1985; Wilhite et al., 1986). The global cli-

ate change in recent years is likely to enhance the number
f incidences of droughts. While much of the weather that we
xperience is brief and short-lived, drought is a more grad-
al phenomenon, slowly taking hold of an area and tighten-

ng its grip with time. In severe cases, drought can last for

any years, and can have devastating effects on agriculture

nd water supplies. It may be difficult to determine when a
rought begins or ends. A drought can be short, lasting just

∗ Corresponding author. Tel.: +91 9434368750.
E-mail addresses: akmishra@civil.iitkgp.ernet.in (A.K. Mishra), venk

304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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a few months, or persist for years before climatic conditions
return to normal. Because the impacts of a drought accumu-
late slowly at first, a drought may not even be recognized until
it has become well established.

Between 1967 and 1992, droughts have affected 50% of
the 2.8 billion people who suffered from all natural disas-
ters. Because of direct and indirect impacts of droughts, 1.3
million human lives were lost, out of a total number of 3.5
million people killed by disasters (Obasi, 1994). Nearly 50%
of the world’s most populated areas are highly vulnerable to
drought. More importantly, almost all of the major agricul-
tural lands are located there (USDA, 1994). Drought produces a
complex web of impacts that spans many sectors of the econ-
omy and reaches well beyond the area experiencing physical
apd@civil.iitkgp.ernet.in (V.R. Desai).

are mainly confined to the Peninsular and Western parts of
the country and there are few pockets in other parts of India.
Out of 795 million ha of geographical area in India about 260
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million ha of land are subjected to different degrees of water
stress and drought conditions.

Drought forecasting plays an important role in the mit-
igation of impacts of drought on water resources systems.
Traditionally, statistical models have been used for hydrologic
drought forecasting based on time series methods. Regression
models and autoregressive moving average (ARMA) models
are typical models for statistical time series methods for fore-
casting. However they are basically linear models assuming
that data are stationary, and have a limited ability to capture
non-stationarities and nonlinearities in the hydrologic data.
Univariate Box–Jenkins ARIMA analysis (Box et al., 1994) has
been extensively used for forecasting hydrologic variables of
interest such as, annual and monthly stream flows, precipita-
tion, etc., which have been generally accepted by practitioners
during the past several decades. However, it is necessary for
hydrologists to consider alternative models when nonlinearity
and non-stationarity play a significant role in the forecast-
ing. In recent decades, artificial neural networks (ANNs) have
shown great ability in modeling and forecasting nonlinear and
non-stationary time series in hydrology and water resource
engineering due to their innate nonlinear property and flexi-
bility for modeling. Some of the advantages of ANNs are (ASCE,
2000a).

(1) They are able to recognize the relation between the
input and output variables without explicit physical consid-
erations. (2) They work well even when the training sets
contain noise and measurement errors. (3) They are able to
adapt to solutions over time to compensate for changing
circumstances. (4) They possess other inherent information-
processing characteristics and once trained are easy to use.
An application of ANN to solve civil engineering problems
began in the late 1980s (Flood and Kartam, 1994a,b). Prelim-
inary concepts of artificial neural networks (ANNs) and their
adaptability to hydrology are well explained in ASCE (2000a)
and Govindaraju and Rao (2000). An exhaustive list of refer-
ences on ANN applications in hydrology can be referred to
ASCE (2000b). Its application to simulation and forecasting
problems in water resources has shown great ability and some
of the applications are mention here. Karunanithi et al. (1994),
Hsu et al. (1995), attempted to predict flow at the current catch-
ment outlet with inputs such as rainfall, upstream flow, and/or
temperature only. Nagesh Kumar et al. (2004) used recurrent
neural networks for river flow forecasting. Some of the appli-
cations of ANN used in ecological modeling are: Acharya (2006)
used a three layer feed-forward neural network model con-
sisting of an input layer, one hidden layer and an output layer
to predict the extent of sulphur removal from three types of
coal using native cultures of Acidithiobacillus ferrooxidans.
Pasini et al. (2006) used a feed-forward neural network, trained
by means of a backpropagation strategy using a generalised
Widrow–Hoff rule for updating the connection weights for
the analysis of forcings/temperatures relationships at differ-
ent scales in the climate system. Melesse and Hanley (2005)
used a feed-forward neural network using a back propaga-
tion algorithm to three different ecosystems (forest, grass-

land and cropland) using partitioned energy fluxes, air and
soil temperature as input variables to predict carbon flux is
presented. Sahoo et al. (2005) used ANN for prediction of pes-
ticide occurrence in rural domestic wells from the available
g 1 9 8 ( 2 0 0 6 ) 127–138

limited information. Among the three ANN models (a feed-
forward back propagation (BP), a radial basis function (RBF)
and an adaptive neural network-based fuzzy inference sys-
tem (ANFIS)) employed for this investigation, the BP neural
network was found to be superior to RBF and ANFIS type
networks for the detection of pesticide occurrences in wells.
Gevrey et al. (2003) used multi-layer feed-forward network
using an error backpropagation training algorithm studied the
explanatory capacity of the variables to identify environmen-
tal factors affecting trout abundance and how these factors
contribute to trout abundance. Antonic et al. (2001) used feed-
forward ANN with multilayer perceptions (MLP) for empirical
model development using seven climatic variables (monthly
mean air temperature, monthly mean daily minimum and
maximum air temperature, monthly mean relative humidity,
monthly precipitation, monthly mean global solar irradiation
and monthly potential evapotranspiration). Recknagel (1997)
used neural network shell explorer, which is a feed-forward
network with backpropagation algorithm for modeling of algal
blooms in four different freshwater systems. Lae et al. (1999)
used multilayer feed-forward neural network approach for
modelling and prediction of fish yield with relation to the envi-
ronmental characteristics developed from the combination
of six variables: catchment area over maximum area, fishing
effort, conductivity, depth, altitude and latitude for 59 lakes in
Africa. Walter (2001) used two type of model: (i) SALMO which
is driven by process-based differential equations model, (ii)
ANNA is designed as recurrent feed-forward neural network
trained by time series data in prediction of phytoplankton
abundance in the Burrinjuck Reservoir.

Scardi (2001) used the error backpropagation (EBP) algo-
rithm in all neural networks for phytoplankton primary pro-
duction modeling. Karul et al. (2000) used a three-layer feed-
forward neural network using a tangent-sigmoid transfer
function between the input layer and the hidden layer, and
a linear transfer function was selected between the hidden
layer and the output layer to model the eutrophication process
in three water bodies of Turkey. Jeong (2001) used a recurrent
artificial neural network for time series modelling of phyto-
plankton dynamics in the hypertrophic Nakdong River sys-
tem considering meteorological, hydrological and limnologi-
cal parameters as input variables and chl. a concentration as
output variable.

It is observed that most of the neural networks are based
on the multilayer feed-forward neural network using back
propagation algorithm. Most of the papers, where the neu-
ral network are used for prediction of events over different
lead time are based on direct approach. In the present paper a
different approach is used which is known as recursive multi-
step approach to forecast drought events over different lead
time. The differences between two approaches are discussed
in the present paper.

Accurate drought forecasting would enable optimal opera-
tion of irrigation systems. The ARMA models, pattern recog-
nition techniques, physically based models using Palmer
drought severity index (PDSI), standardized precipitation
index (SPI), a moisture adequacy index involving Markov

chains, or the notion of conditional probability, seems to offer
a potential to develop reliable and robust forecasts towards
this goal (Panu and Sharma, 2002). Rao and Padmanabhan
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Table 2 – Drought classification based on SPI

SPI values Class

>2 Extremely wet
1.5–1.99 Very wet
1.0–1.49 Moderately wet
−0.99 to 0.99 Near normal
e c o l o g i c a l m o d e l l i n

1984) investigated the stochastic nature of yearly and
onthly Palmer’s drought index (PDI) and to characterize

hem using valid stochastic models to forecast and to simulate
DI series. Sen (1990) predicted the possible critical drought
urations that may result from any hydrologic phenomenon
uring any future period using second order Markov chain.
im and Valdes (2003) used PDSI as drought parameter to fore-
ast drought in the Conchos River Basin in Mexico.

The Neural network models presented in this paper are
ased on SPI as drought index. The SPI is used in this study for
he following advantages, which are discussed by Hayes et al.
1999). The primary reason is that SPI is based on rainfall alone,
o that drought assessment is possible even if other hydro-
eteorological measurements are not available. The SPI is also

ot adversely affected by topography. Another advantage of
PI is its variable timescale, which allows it to describe drought
onditions important for a range of meteorological, hydrolog-
cal and agricultural applications. The third advantage of SPI
omes from its standardization, which ensures that the fre-
uencies of extreme events at any location and on any time
cale are consistent. SPI can also detect moisture deficit more
apidly than PDSI, which has a response time scale of approx-
mately 8–12 months (Hayes et al., 1999).

The main objective of present study is to calculate time
eries of standardized precipitation index (SPI) for multiple
ime scales and to compare neural networks model with lin-
ar stochastic models to forecast drought-using SPI as drought
ndex. The potential of models to forecast drought over differ-
nt lead times are discussed here.

. Database

he physical area considered in this study is the portion of
ansabati River Basin upstream of Kangsabati Dam, in the
xtreme western part of West Bengal state in eastern India.
he region has an area of 4265 km2. The major crops grown in

he catchment are paddy, maize, pulses and vegetables. It is
onsidered a drought prone area with irregular rainfall and the
oil is mostly laterite having low water holding capacity. About
0–60% of the study area is upland, which is managed by the
oor farmers. Lands are mostly mono-cropped having limited
urface irrigation facilities. Irrigated crops are not widespread
ecause water is not enough for that purpose always. For this

tudy, five raingauge stations were considered as shown in
able 1. Monthly rainfall data was procured for the period
rom 1965 to 2001 for these stations. The basin was affected
y severe droughts in the years 1965–1967 and around 1980s,

Table 1 – Raingauge stations in the Kansabati River Basin

Station no. Raingauge station Area (km2)

1 Simulia 1279.5
2 Rangagora 1151.55
3 Tusuma 554.45
4 Kharidwar 682.4
5 Phulberia 597.1
−1 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
<−2 Extremely dry

which was for a longer duration. The severity of drought in
1990s was less though frequency of short term drought oscilla-
tions was more (Mishra and Desai, 2005a). This indicates more
frequent droughts in the basin. SPI time series for multiple
time scales were derived for the average rainfall over the basin
and these SPI values were used as drought index for forecast-
ing the drought.

2.1. Development of SPI series in Kansabati catchment

A deficit of precipitation impacts on soil moisture, stream flow,
reservoir storage, and ground water level, etc., on different
time scales. McKee et al. (1993) developed the SPI to quantify
precipitation deficits on multiple scales. The nature of the SPI
allows an analyst to determine the rarity of a drought or an
anomalously wet event at a particular time scale for any loca-
tion in the world that has a precipitation record. A drought
event occurs at the time when the value of SPI is continu-
ously negative. The event ends when the SPI becomes positive.
Table 2 provides a drought classification based on SPI.

Bussay et al. (1999) and Szalai and Szinell (2000) assessed
the utility of SPI for describing drought in Hungary. They con-
cluded that SPI was suitable for quantifying most types of
drought event. Stream flow was best described by SPIs with
time scale of 2–6 months. Strong relationships to ground water
level were found at time scales of 5–24 months. Agricultural
drought (i.e., deficit of soil moisture content) was replicated by
the SPI on a scale of 2–3 months. Lana et al. (2001) used the
SPI to investigate patterns of rainfall over Catalonia, Spain.
Hughes and Saunders (2002) studied drought climatology for
Europe based on monthly SPIs at time scales of 3, 6, 9, 12, 18,
and 24 months for the period 1901–1999.

Calculation: The SPI is computed by fitting a probability den-

sity function to the frequency distribution of precipitation
summed over the time scale of interest. This is performed
separately for each month (or whatever the temporal basis is
of the raw precipitation time series) and for each location in

Elevation (m) (a.m.s.l) Geographic coordinates

Latitude Longitude

220.97 23◦10′ 86◦22′

222.92 23◦4′ 86◦24′

158.6 23◦08′ 86◦43′

135.96 23◦00′ 86◦38′

144.32 22◦55′ 86◦37′
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Table 3 – Correlation matrix SPI vs. hydrological
variables

SPI series Monthly discharge
in river

Monthly reservoir
storage

SPI 1 0.718 0.3166
SPI 3 0.555 0.661
SPI 6 0.359 0.589
130 e c o l o g i c a l m o d e l l

space. Each probability density function is then transformed
in to the standardized normal distribution.

The gamma distribution is defined by its frequency or prob-
ability density function is defined as

g(x) = 1
ˇ˛� (˛)

x˛−1 e−x/ˇ, for x > 0 (1)

where ˛ > 0 is a shape factor, ˇ > 0 is a scale factor, and x > 0 is
the amount of precipitation. � (˛) is the gamma function which
is defined as

� (˛) =
∫ ∞

0

y˛−1 e−y dy (2)

Fitting the distribution to the data requires ˛ and ˇ to be esti-
mated. Edwards and McKee (1997) suggest estimating these
parameters using the approximation of Thom (1958) for max-
imum likelihood as follows:

ˆ̨ = 1
4A

(
1 +
√

1 + 4A

3

)
(3)

ˆ̌ = x̄

ˆ̨
(4)

where for n observations

A = ln(x̄) −
∑

ln(x)

n
(5)

The resulting parameters are then used to find the cumulative
probability of an observed precipitation event for the given
month and time scale:

G(x) =
∫ x

0

g(x) dx = 1
ˆ̌ ˆ̨ � ( ˆ̨ )

=
∫ x

0

x ˆ̨−1 e−x/ ˆ̌ dx (6)

Substituting t for x/ ˆ̌ reduces equation to incomplete gamma
function. McKee et al. (1993) use an analytic method along
with suggested software code from Press et al. (1986). Since
the gamma function is undefined for x = 0 and a precipitation
distribution may contains zeros, the cumulative probability
becomes

H(x) = q + (1 − q)G(x) (7)

where q is the probability of zero precipitation.
The cumulative probability, H(x), is then transformed to the

standard normal random variable Z with mean zero and vari-
ance one, which is the value of SPI. Following Edwards and
McKee (1997), Hughes and Saunders (2002), we employ the
approximate conversion provided by Abramowitz and Stegun
(1965) as an alternative:

Z = SPI = −
(

t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, for 0 < H(x) ≤ 0.5

(8)
Z = SPI = +
(

t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, for 0.5 < H(x) < 1

(9)
SPI 9 0.236 0.224
SPI 12 0.22 0.188
SPI 24 0.099 0.0844

where

t =
√

ln

[
1

(H(x))2

]
, for 0 < H(x) ≤ 0.5 (10)

t =
√

ln

[
1

(1 − H(x))2

]
, for 0.5 < H(x) < 1 (11)

and

c0 = 2.515517, c1 = 0.802853, c2 = 0.010308, d1 = 1.432788,

d2 = 0.189269, d3 = 0.001308

The SPI series for different timescales are shown in Fig. 1. The
correlation coefficient between average discharge in river and
reservoir storage over different months with SPI calculated
over multiple time scales is shown in Table 3. It is observed
that SPI 1 and SPI 3 have significant correlations with Kans-
abati river flow discharge and SPI 3, SPI 6 with the storage
in the reservoir which lies in the downstream of Kansabati
River.

3. Methodology

3.1. ARIMA models

The stochastic models which are often known as time
series models (ARIMA) have been used in scientific, eco-
nomic and engineering applications for the analysis of time
series. Time series modeling techniques have been shown
to provide a systematic empirical method for simulating
and forecasting the behavior of uncertain hydrologic sys-
tems and for quantifying the expected accuracy of the fore-
casts which can be found in lot of research literatures. There
are two classes of stochastic models, which are described
below.

3.1.1. Non-seasonal models
Autoregressive (AR) models can be effectively coupled with
moving average (MA) models to form a general and useful
class of time series models called autoregressive moving aver-
age (ARMA) models. In an ARMA model the current value of

the time series is expressed as a linear aggregate of p pre-
vious values and a weighted sum of q previous deviations
(original value minus fitted value of previous data) plus a ran-
dom parameter. However they can be used when the data
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Fig. 1 – SPIs series over different time scale

re stationary. This class of models can be extended to non-
tationary series by allowing differencing of data series. These
re called autoregressive integrated moving average (ARIMA)
odels. Box and Jenkins (1976) popularized ARIMA models.

he general non-seasonal ARIMA model is autoregressive to
rder p and moving average to order q and operates on dth dif-
erence of the time series zt; thus a model of the ARIMA family
s classified by three parameters (p, d, q) that can have zero or
ositive integral values.
The general non-seasonal ARIMA model may be written as

(B)∇dzt = �(B)at (12)
d on average rainfall over Kansabati basin.

where �(B) and �(B) are polynomials of order p and q, respec-
tively:

�(B) = (1 − �1B − �2B2 − . . . �pBp) (13)

and

�(B) = (1 − �1B − �2B2 − · · ·�qBq) (14)
3.1.2. Seasonal models
Box et al. (1994) have generalized the ARIMA model to deal
with seasonality, and define a general multiplicative seasonal
ARIMA model, which are commonly known as SARIMA mod-
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els. In short, the SARIMA model can be described as ARIMA
(p, d, q)(P, D, Q)s, where (p, d, q) is the non-seasonal part of the
model and (P, D, Q)s is the seasonal part of the model, which
is mentioned below:

�p(B)˚P(Bs)∇d∇D
s zt = �q(B)�Q (Bs)at (15)

p is the order of non-seasonal autoregression, d the number of
regular differencing, q the order of non-seasonal moving aver-
age, P the order of seasonal autoregression, D the number of
seasonal differencing, Q the order of seasonal moving average
and s is the length of the season.

The time series model development consists of three
stages, i.e., identification, estimation and diagnostic check
(Box et al., 1994) which are available in literatures and time
series books.

3.2. Artificial neural networks

Neural networks are a class of flexible nonlinear models that
can discover patterns adaptively from the data. Theoretically,
it has been shown that given an appropriate number of non-
linear processing units, neural networks can learn from expe-
rience and estimate any complex functional relationship with
high accuracy. Although many types of neural network mod-
els have been proposed, the most popular one for time series
forecasting is the feed-forward model. Fig. 2 shows a typical
three-layer feed-forward model used for forecasting purposes.
The input nodes are the previous lagged observations while
the output provides the forecast for the future value. Hid-
den nodes with appropriate nonlinear transfer functions are
used to process the information received by the input nodes.
In the present paper two different approaches of neural net-
works for forecasting several time steps ahead are discussed
below.

(a) Recursive multi-step neural network approach (RMSNN): This
forecasting technique is similar to ARIMA models in fore-

casting approach which has single output node. A recur-
sive multi-step approach based on one output node, fore-
casting a single step ahead, and the network is applied
recursively, using the previous predictions as inputs for

Fig. 2 – Feed-forward recursive multi-step Neural Network
approach.
Fig. 3 – Direct multi-step Neural Network approach.

the subsequent forecasts (Fig. 2). In this way it was carried
out recursively for six steps to find drought events over
6-month lead time.

(b) Direct multi-step neural network approach (DMSNN): This
approach is based on the advantages of neural networks
over ARIMA models. It is based on the multiple outputs,
when several nodes are included in the output layer, and
each output node represents one time step to be fore-
casted, which is shown in Fig. 3. In the present study there
are six out put nodes, indicating 1–6-month lead time.

To build a model for forecasting, the network is processed
through three stages: (1) The training stage where the net-
work is trained to predict future data, based on past and
present data. (2) The testing stage where the network is
tested to stop training or to keep in training. (3) The evalu-
ation stage where the network ceases training and is used
to forecast future data and to calculate different measures
of error. Back propagation algorithm, which is essentially
a steepest gradient descent method is used in the present
study.

3.2.1. Back propagation training algorithm for three
layered neural networks
Back propagation network (BPN), developed by Rumelhart et
al. (1986) is the most prevalent of the supervised learning mod-
els of ANN. BPN uses the steepest gradient descent method to
correct the weight of the interconnectivity neuron. BPN eas-
ily solves the interaction of the processing of processing ele-
ments by adding hidden layers. In the learning process of BPN,
the interconnection weights are adjusted using error conver-
gence technique to obtain a desired output for a given input.
In general, the error at the output layer in the BPN model prop-
agates backward to the input layer through the hidden layer

in the network to obtain the final desired output. The gradient
descent method is utilized to calculate the weight of the net-
work and adjusts the weight of interconnections to minimize
the output error. The error function at the output neuron is
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efined as

= 1
2

∑
k

(Tk − Ak)2 (16)

n which Tk and Ak represent the actual and predicted values
f output neuron, k.

The gradient descent algorithm adapts the weights accord-
ng to the gradient error, which is given by

Wij = −� × ∂E

∂Wij
(17)

here � is the learning rate and the general form of the ∂E
∂Wij

is

xpressed by the following form (Rumelhart et al., 1986):

∂E

∂Wij
= −ın

j An−1
i

(18)

ubstituting (14) into (13), we have the gradient error as

Wij = �ın
j An−1

i
(19)

n which An−1
i

is the output value of sub-layer related to the
onnective weight (Wij).

ın
j

is the error signal, which is computed based on whether
r not the neuron j is in the output layer. If neuron j is one of
he output neurons, then

j = (Tj − Yj)Yj(1 − Yj) (20)

f neuron j is a neuron of the hidden layer

j =

⎡
⎣∑

j

ıj(Why)
hj

]Hh(1 − Hh)

⎤
⎦ (21)

here Hh is the value of hidden layer.
Finally, the value of weight of the inter-connective neuron

an be expressed as follows:

m
ij = Wm−1

ij
+ ∇Wm

ij = Wm−1
ij

+ �ın
j An−1

i
(22)

o accelerate the convergence of the error in learning pro-
edure, Jacobs (1988) proposed the momentum term with
omentum gain, ˛, in Eq. (18):

m
ij = Wm−1

ij
+ �ın

j An−1
i

+ ˛∇Wm−1
ij

(23)

n which, value for ˛ is between 0 and 1.

.2.2. Design of network
he use of an ANN for forecasting time series implies that the

nput nodes reconnected to a number of past-observed values
o identify the processes at future time steps. The activation

unction determines the relationship between input and out-
uts of a node and a network. In the present work sigmoid
unction

(
1

1+e−x

)
is used, which is the most popular choice.

ata sets are normalized before the training begins using the
8 ( 2 0 0 6 ) 127–138 133

following equation:

Xn = X0 − Xmin

Xmax − Xmin
(24)

where Xn and X0 represent the normalized and original data.
Xmin and Xmax represent the minimum and maximum value
among original data.

In time series problems the number of input nodes cor-
responds to the number of lagged observations used to dis-
cover the underlying pattern in a time series and to make
forecasts for future values. The hidden layer and nodes play
very important roles for many successful applications of neu-
ral networks. It is the nodes in the hidden layer that allow
neural networks to detect the feature, to capture the pat-
tern in the data, and to perform complicated nonlinear map-
ping between input and output variables. It has been proved
that only one layer of hidden units is sufficient for ANNs
to approximate any complex nonlinear function with any
desired accuracy (Cybenko, 1989; Hornik et al., 1989). The hid-
den nodes also allow taking into account the presence of
non-stationarities in the data, such as trends and seasonal
variations (Maier and Dandy, 1996). In the case of the popular
one hidden layer networks, several practical guidelines exist.
These include using “2n + 1” (Lippmann, 1987; Hecht-Nielsen,
1990), “2n” (Wong, 1991), “n” (Tang and Fishwick, 1993) hid-
den neurons for better forecasting accuracy, where n is the
number of input nodes. Fewer neurons in the hidden layer
than in the input layer has worked well in the past (Fletcher
and Goss, 1993; Zhang and Dong, 2001). In order to determine
the optimal network architecture, the number of neurons in
the input and hidden layer were determined by experimenta-
tion. Tang and Fishwick (1993), claim that the number of input
nodes is simply the number of autoregressive (AR) terms in
the Box–Jenkins model for a univariate time series. This is not
true because: (1) for moving average (MA) processes, there are
no AR terms; (2) Box–Jenkins models are linear models. The
number of AR terms only tells the number of linearly cor-
related lagged observations and it is not appropriate for the
nonlinear relationships modeled by neural networks (Zhang
et al., 1998). In the present study input neurons (n) ranging
from 1 to 20 were tested. For each input layer dimension,
the numbers of hidden nodes (h) were progressively increased
from 1 to 2n + 1, where n is the corresponding input neu-
rons. The coefficient of correlation for each combination of
input and hidden neurons is calculated. The combination hav-
ing maximum coefficient of correlation and minimum root
mean square error is chosen as optimal network. The net-
work is trained for 5000 epochs using back propagation algo-
rithm with learning rate of 0.01 and momentum coefficient
0.9.

The performance of the predictions resulting from the neu-
ral network models is evaluated by the following measure for
goodness-of-fit:
Root mean square error (RMSE) =

√√√√1
p

p∑
i=1

[(Xm)i − (Xs)i]
2

(25)
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Table 4 – Comparison of forecasting measures between observed and predicted data

Model Forecasting
measures

1-month lead
time

2-month lead
time

3-month lead
time

4-month lead
time

5-month lead
time

6-month
lead
time

(a) SPI 3 over different lead time

Stochastic
(ARIMA(5,0,2))

R 0.801 0.661 0.4459 0.3234 0.2782 0.2073
MAE 0.733 0.9874 1.1453 1.2503 1.5636 1.613
RMSE 0.927 1.2116 1.4301 1.4463 1.4605 1.4784

RMSNN (6-9-1)
R 0.83 0.67 0.462 0.352 0.302 0.232
MAE 0.6417 0.8965 1.0724 1.18 1.4025 1.5537
RMSE 0.8382 1.1567 1.383 1.4325 1.4465 1.4691

DMSNN (11-5-6)
R 0.821 0.75 0.689 0.65 0.59 0.54
MAE 0.653 0.843 0.987 0.998 1.1025 1.1537
RMSE 0.8478 1.052 1.156 1.1985 1.232 1.283

(b) SPI 6 over different lead time

Stochastic (ARIMA
(1,0,0)(1,1,1)6)

R 0.799 0.6176 0.411 0.352 0.283 0.219
MAE 0.6595 0.884 1.0022 1.1088 1.1684 1.19
RMSE 0.9009 1.1335 1.2762 1.3408 1.3839 1.4008

RMSNN (7-4-1)
R 0.8509 0.658 0.483 0.36 0.295 0.254
MAE 0.5054 0.7806 0.8985 1.008 1.1324 1.1446
RMSE 0.7139 0.9685 1.0994 1.1468 1.2649 1.3749

DMSNN (16-7-6)
R 0.842 0.78 0.719 0.673 0.621 0.587
MAE 0.5112 0.7806 0.8985 1.008 1.1324 1.1446
RMSE 0.718 0.868 0.897 0.957 0.986 1.021

(c) SPI 9 over different lead time

Stochastic (ARIMA
(1, 0, 0) (3, 1, 1)9)

R 0.877 0.7298 0.595 0.5078 0.444 0.388
MAE 0.4199 0.5854 0.7269 0.8165 0.8755 0.9563
RMSE 0.5783 0.8297 0.9875 1.0692 1.1111 1.1421

RMSNN (9-3-1)
R 0.905 0.766 0.606 0.52 0.462 0.398
MAE 0.3759 0.5036 0.5843 0.7106 0.7851 0.8825
RMSE 0.5262 0.7656 0.9092 0.972 1.08 1.0926

DMSNN (16-8-6)
R 0.898 0.802 0.776 0.683 0.621 0.601
MAE 0.3871 0.4832 0.5121 0.573 0.632 0.687
RMSE 0.5291 0.7165 0.821 0.868 0.897 0.931

(d) SPI 12 over different lead time

Stochastic (ARIMA
(1,0,0) (2,1,0)12)

R 0.925 0.828 0.73 0.648 0.56 0.476
MAE 0.2931 0.4546 0.5831 0.6861 0.7928 0.8859
RMSE 0.4284 0.6423 0.7929 0.8921 0.9817 1.0551

RMSNN (9-3-1)
R 0.93 0.84 0.742 0.68 0.572 0.491
MAE 0.2731 0.3608 0.4947 0.5372 0.6313 0.7872
RMSE 0.4101 0.6244 0.7734 0.828 0.9152 1.0075

DMSNN (16-8-6)
R 0.926 0.87 0.81 0.76 0.692 0.623
MAE 0.294 0.347 0.398 0.51 0.582 0.663
RMSE 0.419 0.563 0.645 0.711 0.778 0.801

(e) SPI 24 over different lead time

Stochastic (ARIMA
(1,0,0)(0,1,1)24)

R 0.9055 0.797 0.714 0.654 0.619 0.588
MAE 0.236 0.3445 0.4185 0.4698 0.4957 0.5167
RMSE 0.3445 0.4953 0.577 0.6242 0.6435 0.6578

RMSNN (7-4-1)
R 0.921 0.801 0.721 0.658 0.622 0.591
MAE 0.2203 0.3172 0.3874 0.4561 0.4782 0.4915
RMSE 0.3176 0.4645 0.5397 0.6085 0.6264 0.6423

DMSNN (14-5-6)
R 0.916 0.865 0.819 0.786 0.724 0.631
MAE 0.229 0.281 0.334 0.368 0.391 0.473
RMSE 0.321 0.423 0.438 0.536 0.568 0.598

R = coefficient of correlation; MAE = mean absolute error; RMSE = root mean square error.
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ean absolute error (MAE) = 1
p

p∑
i=1

∣∣(Xm)i − (Xs)i
∣∣ (26)

here the subscripts m and s represent the observed and
imulated SPI values, respectively; p = total number of events
onsidered.

. Results and discussion

n the present paper SPI is used as drought quantification
arameter because drought forecasting remains a difficult but
itally remains an important task for water resource man-
gers. Three different types of models are compared in the
resent paper considering the importance of lead time. The

RIMA/SARIMA models were developed for different SPI series
sing the correlation methods of Box and Jenkins based on
IC and SBC structure as selection criteria, which can be

eferred to authors’ paper (Mishra and Desai, 2005b). The Neu-

ig. 5 – A comparison between observed data and predicted data
PI series.
for SPI 12 based on RMSNN approach.

ral network models are developed to forecast drought in this

study using recursive multi-step approach and direct multi-
step approach. The available data are split into two parts,
the data set from 1965 to 1994 is used to estimate the model
parameters and the data from 1995 to 2001 is used to check

over 1-month lead time using ARIMA and RMSNN for all
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the forecast accuracy. For SPI 24 the data from 1965 to 1989 is
used to estimate model parameters and the data from 1990
to 2001 is used to check the forecast accuracy. The data set is
different for SPI 24, so as to include more drought incidences,
as drought incidences for this time scale are rare. For model
development input data differ for different SPI series, which
was found based on experimentation. The coefficient of corre-
lation for each combination taking different number of input
and hidden neurons between observed and simulated data
is calculated. The input nodes (n) were varied from 1 to 20
and the corresponding hidden nodes varied from 1 to 2n + 1.
The combination having maximum coefficient of correlation

and minimum root mean square error is chosen as optimal
network. Coefficient of correlation with different combination
of input neurons and hidden neurons for SPI 12, based on
the recursive multi-step neural network approach is shown

Fig. 6 – A comparison between ARIMA and RMSNN over 2–6-mon
3-month lead time, (c) 4-month lead time, (d) 5-month lead time
1 9 8 ( 2 0 0 6 ) 127–138

in Fig. 4. In a similar way the optimal architecture for other
SPI series are calculated shown in Table 4. The SPI 3, SPI 6, SPI
9, SPI 12 and SPI 24 were forecasted over different lead times
(1, 2, 3, 4, 5 and 6 months) using optimal networks. Finally
the results of both type neural network models are compared
with ARIMA models developed by Mishra and Desai (2005b).
The quantitative evaluation of the different model perfor-
mance is carried out using correlation coefficient (CC), root
mean square error (RMSE), and mean absolute error (MAE) over
different lead time for all SPI series shown in Table 4(a)–(e).
The numbers of hidden neurons were varied corresponding
to each input neuron and it is observed that performance of

ANN architecture increases when the number of hidden neu-
ron is approximately half the number of input neurons. It is
observed that the number of input neurons increases in direct
multi-step approach to forecast over a 6-month lead time in

th lead time for SPI 12 series (a) 2-month lead time, (b)
and (e) 6-month lead time.
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Table 5 – Statistics result for 1-month lead time of all SPI series using recursive multi-step neural network (RMSNN) model

SPI series Mean observed Mean forecasted Decision, |zcal| < 1.96 Variance
observed

Variance
forecasted

Decision, Fcal < Ftab

SPI 3 0.2619 0.1932 0.3231 2.06 1.7423 0.8458 < 1.462
SPI 6 0.4498 0.4963 0.2701 1.7446 1.6934 0.9706 < 1.462
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SPI 9 0.6279 0.56004
SPI 12 0.7307 0.6954
SPI 24 0.7540 0.7553

omparison to recursive multi-step approach. The time series
f the observed and 1 month ahead simulated values between
RIMA and RMSNN for all SPI series shown in Fig. 5. The time
eries of the observed and two to 6-month lead time fore-
asted values between ARIMA and RMSNN for SPI 12 is shown
n Fig. 6. It is observed that with longer lead time the fore-
ast accuracy decreases between observed and predicted data.
he simulated values up to 1-month lead time were not sig-
ificantly different from observed values for all three models.
he recursive multi-step approach seems to provide very good
esult up to 1-month lead time in comparison to direct multi-
tep and ARIMA models. The basic statistical properties are
ompared between observed and forecasted data for 1-month
ead time using recursive multi-step approach, based on Z-
est for the means and F-test for standard deviation shown
n Table 5. Since Zcal values found to be less than Z-critical
able values (±1.96 for two tailed at a 5% significance level),
he data shows that there is no significant difference between
he mean values of observed and predicted data. Similarly,
he Fcal values of standard deviation were smaller than the F-
ritical values at a 5% significance level. Thus, the result shows
hat predicted data preserves the basic statistical properties
f the observed series. When longer lead time of 4 months is
onsidered direct multi-step approach outperforms recursive
ulti-step and ARIMA models.

. Conclusions

n this paper the application of an NN has been successfully
emonstrated on drought forecasting in Kansabati River Basin,

ndia. The objective of the study was two-fold: first the SPI time
eries, which is used to quantify drought, are generated over
ultiple durations in the basin based on the average rainfall.

t is observed that SPI 1 and SPI 3 is having good correlations
ith River flow discharge and SPI 3, SPI 6 with the storage in

he reservoir over different months. The second objective was
o develop NN models and to compare with ARIMA models
or prediction of drought using SPI as drought index. Differ-
nt ARIMA and NN architecture were applied to forecast SPI
eries and the best models were found by comparing observed
nd predicted data. The result of the neural network models
re compared with linear stochastic (ARIMA/SARIMA) mod-
ls. This paper highlights the importance of neural network
odels for comparison of forecasting results over shorter and

onger lead time comparing different forecasting measures.

he results obtained from the models show that recursive
ulti-step approach is best suited for 1 month ahead pre-

iction. When longer lead time of 4 months is considered
irect multi-step approach outperforms recursive multi-step
1.4613 1.2215 0.8359 < 1.462
1.2663 1.2209 0.9611 < 1.462
0.6419 0.6731 0.9419 < 1.00

and ARIMA models. The performance of the ARIMA models
provides good result up to 2-month lead time but inferior in
comparison to direct multi-step approach. The performance
of ARIMA and recursive multi-step approach decreases over
longer lead time because of accumulation of error between
observed and predicted values at each time steps. As drought
is a creeping phenomenon, so understanding drought is a dif-
ficult task. Hence drought forecasting is a real challenge for
the researchers, so the present paper will be highly useful for
sustainable development of river basins which will prevent
environmental degradation of ecosystem. These neural net-
work models can be very useful for local administrations and
water resource planners to take precautions considering the
severity of drought known in advance.
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